
Eloquence Webinar

What’s new in
Eloquence B.08.20

- Part 2 -

Rev:120611© 2012 Marxmeier Software AG

New functionality

 Eloquence B.08.20 comes with a number of substantial
enhancements in various product components

 Database full text search functionality

 Major language enhancements

 PCL to PDF conversion

 Improved WebDLG

 Improved JDLG

Language enhancements

 Syntax enhancements

 Support longer identifier names (up to 26 characters)

 Support PATH to replace MSI

 NLN (no line numbers) mode removes dependency on unique
line numbers at runtime

 On demand loading of functions and subroutines

 Introducing support for class methods

 Support external class definitions in separate files

 On demand loading of classes and methods

Syntax enhancements

 Support longer identifier names (up to 26 characters)

Long_variable_name = 1

 CALL Subroutine_with_long_name

Note: Using identifier names longer than 15 characters will make
programs incompatible with previous Eloquence versions

Syntax enhancements

 Support member variables in IF .. THEN implied LET

IF .. THEN Obj.Member=1

 Support STRUCT assignment in IF .. THEN implied LET

IF .. THEN STRUCT A=B

Syntax enhancements

 Support member variables with MAT statement

MAT Obj.Member=ZER
MAT Obj.Member=(1)
MAT Obj.A=Obj.B+(4711)

Note: Using a member variable with MAT will make the program
incompatible with previous Eloquence versions.

 Support member variables with SUM, ROW and COL array
functions

PRINT SUM(V.R)

Syntax enhancements

 LIST SUB/FN [TO END]

LIST FNDate$
LIST SUB Example TO END
LIST SUB Class:Method

Syntax enhancements

 Improved SPACE DEPENDENT mode
SPACE INDEPENDENT mode is tried first

Improved handling of conflicting syntax

 Support inserting program segments

Syntax enhancements

 The SETENV statement allows to set, change or undefine
environment variables from an application.

SETENV "Name","Value"
SETENV "Name“
GETENV$("Name")

 Environment variable names are case sensitive and limited to a
max. of 255 characters.

 When a value argument is present, the environment variable is
added or changed to the specified value. When a value a
argument is not present the environment variable is deleted.

 Note: It is currently undefined behavior (platform specific) if any
changed environment variables are visible to sub processes (eg.
executed with COMMAND).

PATH

 If a PATH is defined it is used instead of the default volume
label (MSI) to locate files

LOAD “Prog”
GET FORM “Form”

 A PATH consists of one or more elements

 Elements are separated by a colon (on HP-UX and Linux) or a
semicolon (on Windows)

.::/opt/eloquence/8.2/share/prog

PATH consisting of the local directory, the current MSI volume
and an absolute path

Defining a PATH

 Config file

PATH ".:/opt/eloquence/8.2/share/prog"

 EQPATH environment variable

export EQPATH=.:/opt/eloquence/8.2/share/prog

 PATH statement

PATH ".:/opt/eloquence/8.2/share/prog“
PATH GETENV$("HOME")&":"&PATH$

PATH elements

 An absolute directory starts with a slash (or with a backslash, a
drive letter a colon and a backslash for Windows)

/opt/eloquence/8.2/share/prog
C:\program files\eloquence\8.2\share\prog

 A relative directory (relative to the current directory) is specified
with a leading dot

./test

PATH elements

 A volume label may be used to reference the path specified in
the volume definition

LABEL

 A relative path and a volume label (separated by comma)

test,LABEL

 Anything else is considered a directory relative to the (current)
MSI volume label. An empty element refers to the current MSI
volume

test

NLN mode

 If NLN (no line numbers) mode is enabled a LOAD SUB will no
longer renumber program code, retaining its original line
numbers

 As a consequence line numbers are no longer unique across
program segments when executing an application

 Line numbers continue to be unique per program segment and
in program files on disk

 With few exceptions Eloquence does not depend on unique line
numbers at runtime

NLN mode

 NLN mode mostly affects debugging using the text mode
development environment

 When the program is not running line numbers are unique and
behavior is unchanged

NLN mode

 When the program is running line numbers
are context specific

 NLN segments are hidden unless in use (and
removed once the program stops)

 When executing in a non NLN segment
lines in a NLN segment can't be modified

 When executing in a NLN segment
lines outside this segment can't be modified,
any line numbers refer to this program
segment

 1 LOAD SUB …
 2
 3

 4
 5
 6

 1
 2
 3

 1
 2
 3

SUB Main2

SUB Ext1

FN Ext2

Configuring NLN mode

 The Eloquence NLN mode may be configured in the config file

OPTION NLN 1

 NLN mode is disabled by default to ensure full backwards
compatibility

Automatic code management

 Program code may be loaded automatically on first use and is
removed when no longer referenced

 Autoloaded program code uses NLN mode (regardless if its
configured)

 Autoloading relies on program file naming conventions
SUB Test -> Test.PROG

FNTest -> FNTest.PROG

FNTest$ -> FNTest$.PROG

 Unused program code is cached temporarily (for performance
reasons) and removed from memory when the cache size
reaches an internal limit

Automatic code management

 A missing function or subroutine is automatically loaded, so a

CALL Test

will load a file Test.PROG

 A custom handler subroutine may be specified to override the
default behavior

ON UNDEFINED CALL Handler
SUB Handler(Name$)
 LOAD SUB Name$
END SUB

Configuring autoload

 The Eloquence autoload may be configured in the config file

OPTION AUTOLOAD 1

 Autoload is enabled by default. It may be disabled to ensure full
backwards compatibility

DEMO

 Autoload code

 ON UNDEFINED

Classes and methods

 Functions or subroutines specific to a class are called methods

 A method is called with an implied reference to the object

 Member variables and methods are accessible using the THIS
keyword

 Base class methods are accessible using the SUPER keyword

SUB Class:Method [(arguments)]

DEF FN Class:Method [(arguments)]

DEF FN Class:Method$ [(arguments)]

CALL A.Print

CALL SUPER.Print

External Class definitions

 A Classes (and its methods) may be defined in a separate
program file

 Class definitions may be loaded explicitly with the LOAD CLASS
statement

 When enabled missing class definitions may be loaded
automatically

CLSPATH “/path/to/classes1:/path/to/classes2”

DIM V:Tname

LOAD CLASS “…”

DEL CLASS Tname

Configuring class autoload

 The Eloquence class autoload may be configured in the config
file

OPTION CLSLOAD 1

 Class autoload is enabled by default. It may be disabled to
ensure full backwards compatibility

DEMO

 Autoload class with methods

Relative access to class members

 The WITH / END WITH keywords define a context

 A leading dot in a variable (or method) name indicates access
relative to this context

 The default context in a class method is the current object

PRINT Obj.Name$

CALL Obj.Print

WITH Obj

 PRINT .Name$

 CALL .Print

END WITH

Return object from function

 A function may return an object

DIM STRUCT A

STRUCT A=FNX
PRINT TYPEOF(A)
END

DEF FNX

 TYPE T
INTEGER I

END TYPE

NEW V:T
V.I=1234
RETURN STRUCT V

FN END

eqpcl utility

PDF Support

Rev:120611© 2012 Marxmeier Software AG

eqpcl utility

 New eqpcl utility adds PDF and Postscript support

 Converts PCL output to PDF or Postscript

 Implements a commonly used subset of PCL functionality and is
expected to work with a majority of existing applications

 Unsupported PCL functions are silently ignored

 PCL command sequences and text are translated into Postscript
and uses GNU Ghostscript to create the PDF output

eqpcl utility

PCL Output

Ghostscript

PDF DocumentPS Document

eqpcl

eqpcl utility (limitations)

 PCL functions are not supported:
– user defined fonts

– user defined symbol sets

– user defined patterns

– area fill with patterns

– HP GL/2

– raster graphics (other than area fill)

 Limited support
– limited fonts supported

– limited symbol sets supported

eqpcl utility (enhancements)

 virtual trays to define paper format and forms
– Define forms and letter heads in the configuration

– No need to use PCL macros

– Easily enhance any document

 various barcode types supported

DEMO

- Creating a PDF document from PCL application

- Using a page overlay

- Using barcode

Detailed information is available on the

Eloquence web site

http://eloquence.marxmeier.com

Get in contact

info@marxmeier.com

More information

	Eloquence Webinar
	New functionality
	Language enhancements
	Syntax enhancements
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	PATH
	Defining a PATH
	PATH elements
	Folie 13
	NLN mode
	Folie 15
	Folie 16
	Configuring NLN mode
	Automatic code management
	Folie 19
	Configuring autoload
	DEMO
	Classes and methods
	External Class definitions
	Configuring class autoload
	Folie 25
	Relative access to class members
	Return object from function
	eqpcl utility
	Folie 29
	Folie 30
	eqpcl utility (limitations)
	eqpcl utility (enhancements)
	Folie 33
	Detailed information is available on the Eloquence web site http://eloquence.marxmeier.com Get in contact info@marxmeier.com

