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New functionality

 Eloquence B.08.20 comes with a number of substantial 
enhancements in various product components

 Database full text search functionality

 Major language enhancements

 PCL to PDF conversion

 Improved WebDLG

 Improved JDLG



Language enhancements

 Syntax enhancements 

 Support longer identifier names (up to 26 characters)

 Support PATH to replace MSI

 NLN (no line numbers) mode removes dependency on unique 
line numbers at runtime

 On demand loading of functions and subroutines

 Introducing support for class methods

 Support external class definitions in separate files

 On demand loading of classes and methods



Syntax enhancements

 Support longer identifier names (up to 26 characters)

Long_variable_name = 1

  CALL Subroutine_with_long_name

Note: Using identifier names longer than 15 characters will make 
programs incompatible with previous Eloquence versions



Syntax enhancements

 Support member variables in IF .. THEN implied LET

IF .. THEN Obj.Member=1

 Support STRUCT assignment in IF .. THEN implied LET

IF .. THEN STRUCT A=B



Syntax enhancements

 Support member variables with MAT statement

MAT Obj.Member=ZER
MAT Obj.Member=(1)
MAT Obj.A=Obj.B+(4711)

Note: Using a member variable with MAT will make the program 
incompatible with previous Eloquence versions.

 Support member variables with SUM, ROW and COL array 
functions

PRINT SUM(V.R)



Syntax enhancements

 LIST SUB/FN [TO END] 

LIST FNDate$
LIST SUB Example TO END
LIST SUB Class:Method



Syntax enhancements

 Improved SPACE DEPENDENT mode
SPACE INDEPENDENT mode is tried first 

Improved handling of conflicting syntax

 Support inserting program segments



Syntax enhancements

 The SETENV statement allows to set, change or undefine 
environment variables from an application. 

SETENV "Name","Value"
SETENV "Name“
GETENV$("Name")

 Environment variable names are case sensitive and limited to a 
max. of 255 characters. 

 When a value argument is present, the environment variable is 
added or changed to the specified value. When a value a 
argument is not present the environment variable is deleted. 

 Note: It is currently undefined behavior (platform specific) if any 
changed environment variables are visible to sub processes (eg. 
executed with COMMAND). 



PATH

 If a PATH is defined it is used instead of the default volume 
label (MSI) to locate files

LOAD “Prog”
GET FORM “Form”

 A PATH consists of one or more elements

 Elements are separated by a colon (on HP-UX and Linux) or a 
semicolon (on Windows) 

.::/opt/eloquence/8.2/share/prog

PATH consisting of the local directory, the current MSI volume 
and an absolute path



Defining a PATH

 Config file

PATH ".:/opt/eloquence/8.2/share/prog"

 EQPATH environment variable

export EQPATH=.:/opt/eloquence/8.2/share/prog

 PATH statement

PATH ".:/opt/eloquence/8.2/share/prog“
PATH GETENV$("HOME")&":"&PATH$



PATH elements

 An absolute directory starts with a slash (or with a backslash, a 
drive letter a colon and a backslash for Windows)

/opt/eloquence/8.2/share/prog 
C:\program files\eloquence\8.2\share\prog
 

 A relative directory (relative to the current directory) is specified 
with a leading dot

./test



PATH elements

 A volume label may be used to reference the path specified in 
the volume definition

LABEL

 A relative path and a volume label (separated by comma)

test,LABEL 

 Anything else is considered a directory relative to the (current) 
MSI volume label. An empty element refers to the current MSI 
volume

test



NLN mode

 If NLN (no line numbers) mode is enabled a LOAD SUB will no 
longer renumber program code, retaining its original line 
numbers

 As a consequence line numbers are no longer unique across 
program segments when executing an application

 Line numbers continue to be unique per program segment and 
in program files on disk

 With few exceptions Eloquence does not depend on unique line 
numbers at runtime



NLN mode

 NLN mode mostly affects debugging using the text mode 
development environment 

 When the program is not running line numbers are unique and 
behavior is unchanged 



NLN mode

 When the program is running line numbers 
are context specific

 NLN segments are hidden unless in use (and 
removed once the program stops)

 When executing in a non NLN segment 
lines in a NLN segment can't be modified

 When executing in a NLN segment 
lines outside this segment can't be modified, 
any line numbers refer to this program 
segment
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SUB Main2

SUB Ext1

FN Ext2



Configuring NLN mode

 The Eloquence NLN mode may be configured in the config file

OPTION NLN 1

 NLN mode is disabled by default to ensure full backwards 
compatibility



Automatic code management

 Program code may be loaded automatically on first use and is 
removed when no longer referenced

 Autoloaded program code uses NLN mode (regardless if its 
configured)

 Autoloading relies on program file naming conventions
SUB Test -> Test.PROG 

FNTest -> FNTest.PROG 

FNTest$ -> FNTest$.PROG 

 Unused program code is cached temporarily (for performance 
reasons) and removed from memory when the cache size 
reaches an internal limit



Automatic code management

 A missing function or subroutine is automatically loaded, so a

CALL Test

will load a file Test.PROG

 A custom handler subroutine may be specified to override the 
default behavior

ON UNDEFINED CALL Handler
SUB Handler(Name$)
    LOAD SUB Name$
END SUB



Configuring autoload

 The Eloquence autoload may be configured in the config file

OPTION AUTOLOAD 1

 Autoload is enabled by default. It may be disabled to ensure full 
backwards compatibility



DEMO

 Autoload code

 ON UNDEFINED



Classes and methods

 Functions or subroutines specific to a class are called methods

 A method is called with an implied reference to the object

 Member variables and methods are accessible using the THIS 
keyword

 Base class methods are accessible using the SUPER keyword

SUB Class:Method [ (arguments) ]

DEF FN Class:Method [ (arguments) ]

DEF FN Class:Method$ [ (arguments) ]

CALL A.Print

CALL SUPER.Print



External Class definitions

 A Classes (and its methods) may be defined in a separate 
program file

 Class definitions may be loaded explicitly with the LOAD CLASS 
statement

 When enabled missing class definitions may be loaded 
automatically 

CLSPATH “/path/to/classes1:/path/to/classes2”

DIM V:Tname

LOAD CLASS “…”

DEL CLASS Tname



Configuring class autoload

 The Eloquence class autoload may be configured in the config 
file

OPTION CLSLOAD 1

 Class autoload is enabled by default. It may be disabled to 
ensure full backwards compatibility



DEMO

 Autoload class with methods



Relative access to class members

 The WITH / END WITH keywords define a context

 A leading dot in a variable (or method) name indicates access 
relative to this context

 The default context in a class method is the current object

PRINT Obj.Name$

CALL Obj.Print

WITH Obj

   PRINT .Name$

   CALL .Print

END WITH



Return object from function

 A function may return an object

DIM STRUCT A

STRUCT A=FNX
PRINT TYPEOF(A)
END

DEF FNX

  TYPE T
INTEGER I

END TYPE

NEW V:T
V.I=1234
RETURN STRUCT V

FN END



eqpcl utility

PDF Support
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eqpcl utility

 New eqpcl utility adds PDF and Postscript support

 Converts PCL output to PDF or Postscript

 Implements a commonly used subset of PCL functionality and is 
expected to work with a majority of existing applications

 Unsupported PCL functions are silently ignored

 PCL command sequences and text are translated into Postscript 
and uses GNU Ghostscript to create the PDF output



eqpcl utility

PCL Output

Ghostscript

PDF DocumentPS Document

eqpcl



eqpcl utility (limitations)

 PCL functions are not supported:
– user defined fonts

– user defined symbol sets

– user defined patterns

– area fill with patterns

– HP GL/2

– raster graphics (other than area fill)

 Limited support
– limited fonts supported

– limited symbol sets supported



eqpcl utility (enhancements)

 virtual trays to define paper format and forms
– Define forms and letter heads in the configuration

– No need to use PCL macros

– Easily enhance any document 

 various barcode types supported



DEMO

- Creating a PDF document from PCL application

- Using a page overlay

- Using barcode



Detailed information is available on the

Eloquence web site

http://eloquence.marxmeier.com

Get in contact

info@marxmeier.com

More information
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