
Eloquence Training

What’s new in
Eloquence B.08.00

Rev:100727 © 2010 Marxmeier Software AG

Overview

� Released December 2008

� Supported until November 2013

� Supports 32-bit and 64-bit platforms
– HP-UX Itanium and PA-RISC

– Linux x86, x64 and Itanium

– Windows x86 and x64

� Installed in a separate location and may be used concurrently
with previous Eloquence versions on HP-UX and Linux

Technological enhancements

� Implements new thread model for Eloquence database server

� Provides base for future enhancements

� Adapt Eloquence technology to newer HW and OS capabilities
– Larger number of CPU cores

– CPU speed increases are more moderate

– Larger memory sizes

– OS level threading improvements

� Additional platform support

Functional enhancements

� Implements major functional and scalability improvements in the
database server

� Performance enhancements

� Security and monitoring improvements

� Support for case insensitive indexes

� Enhances a broad range of Eloquence components

� Some functional enhancements are backported to B.07.10

Database Scalability

� Address needs of large customers that need additional
performance headroom
– previous Eloquence was limited to 4000 concurrent connections

– practical limit was lower depending on activity, independent of hardware

– dedicated database cache was limited to 1 GB (plus OS shared cache)

� Scalability improvements
– make use of available CPU resources (improved multi-threading)

– improved scalability on large memory configurations

– release 64 bit versions

– optimizing concurrency

� Improves throughput on contemporary hardware

Eloquence thread model

Eloquence B.07.xx versions use its own threads implementation

� Designed when OS threading support was limited

� Low overhead
– minimum overhead on locking, context switches, memory efficient

� Two types of threads
– internal threads (used for application tasks)

– OS interface threads (uses separate process on HP-UX, kernel threads
on Linux and Windows), used for I/O

Eloquence thread model

Eloquence B.08.00 uses OS native threads

� Improves scalability and latency (depending on workload)

� Improves utilization of modern hardware

� Additional system resources needed

Performance enhancements

Various performance enhancements to improve scalability,
such as

� Reduce lock contention during cache-miss handling

� Improved concurrency with client-side caching

� Revised lock scheduler scalability for competing locks

� More efficient forward-log format for index and meta data

Database replication

� Replicates entire server instance, not individual database

� Replication is unidirectional (master / slave)

� Replication is asynchronous but close to real time

� Slave server(s) are are read-only, write access may be
redirected to master

� Replicates server transactions, not IMAGE calls

� Requires little maintenance

� Optional feature, requires separate license key

Replication use cases

� Hot standby server for disaster failover

� Load sharing by moving reporting to slave

� Incremental remote backup

� „time snapshots“ on slave for fallback or reporting

� Distributing central data to branch offices

Database Replication

� Master and slave server must have compatible architectures

� Master and slave server may reside on the same or different
machines

� Requires fw logs on master server

� dbrepl utility reads fw logs and interacts with slave server
– Contacts slave server to obtain replication status

– Follows fw logs on master and replicates to slave

� “dbctl replication status” may be used to obtain replication
progress/status from master and slave server

fw log

fw log

eloqdb „master“

log vol db vol

Database replication

eloqdb „slave“

log vol db vol

dbrepl

$ dbrepl -c master.cfg -v slave-host:slave-port

Additional recovery options

� Point-in-time recovery
– recover from backup to a specific point in time

– requires previous backup and fw log files since then

� Incremental recovery
– recovery may continue from last point

– server may not be started in between

Database monitoring

� Additional options for server performance logging
– Dynamically enable/disable performance logging via dbctl

– Simplified integration with monitoring framework

� Logging of session performance information
– session-specific performance monitoring

– Disk accesses, DB calls and elapsed time

– Optionally log information at a specified frequency in addition to session
completion

– Dynamically enable/disable logging via dbctl

– Useful to analyze application performance problems

– Also available interactively through http status

� Enhancements to http status pages

Session Performance Log

� Logging of session activity and performance information
– Disk accesses, DB calls and elapsed time

– Optionally log information at a specified frequency in addition to session
completion

– Also available interactively through http status

– Useful to analyze application performance problems

� Configured in the config file
– [server] SessionStatFile specifies log file

– [server] SessionStatMode specifies log frequency

– 0 = off, 1 = at end of session, > 1 also log at specified interval (sec)

� May be configured dynamically with dbctl
– dbctl sessionstatfile [FileName|DISABLED]

– dbctl sessionstatmode [mode]

fwutil library

� Programmatic access to db transactions
– easy way to monitor database changes from custom program

– incremental and asynchronous, typically close to real time

– fwutil library performs complex work and isolates utility from any internals

– Uses fw logs and audit information

� Example uses
– Implement custom actions on database changes

– Data extraction and reporting (data warehouse)

fwutil library

� Custom program needs to be written in C and linked with the
fwutil library

� Program passes control to the fwutil library

� fwutil library extracts information from fw logs and invokes
customer defined callback functions

� fwutil library works incrementally, saving its progress in a status
file

� Example programs are available
– fwtest.c - print some information on database transactions

– fwsql.c - convert database changes to SQL like syntax

More information

Detailed information is available on the

Eloquence web site

http://eloquence.marxmeier.com

Get in contact

info@marxmeier.com

