Eloquence Training e,oq.ﬁe%,

What's new In
Eloguence B.08.00

© 2010 Marxmeier Software AG Rev:100727

eloquence’

Overview

= Released December 2008
= Supported until November 2013

= Supports 32-bit and 64-Dbit platforms

— HP-UX Itanium and PA-RISC
— Linux x86, x64 and Itanium
— Windows x86 and x64

= Installed in a separate location and may be used concurrently
with previous Eloquence versions on HP-UX and Linux

eloquence’

Technological enhancements

= Implements new thread model for Eloquence database server
= Provides base for future enhancements

= Adapt Eloguence technology to newer HW and OS capabilities

— Larger number of CPU cores

— CPU speed increases are more moderate
— Larger memory sizes

— OS level threading improvements

= Additional platform support

eloquence’

Functional enhancements

= Implements major functional and scalability improvements in the
database server

= Performance enhancements

= Security and monitoring improvements

= Support for case insensitive indexes

= Enhances a broad range of Eloguence components

= Some functional enhancements are backported to B.07.10

eloquence’

Database Scalability

= Address needs of large customers that need additional
performance headroom

— previous Eloguence was limited to 4000 concurrent connections
— practical limit was lower depending on activity, independent of hardware
— dedicated database cache was limited to 1 GB (plus OS shared cache)

= Scalability improvements
— make use of available CPU resources (improved multi-threading)
— improved scalability on large memory configurations
— release 64 bit versions
— optimizing concurrency

= |Improves throughput on contemporary hardware

eloquence’

Eloquence thread model

Eloquence B.07.xx versions use its own threads implementation
= Designed when OS threading support was limited

= Low overhead
— minimum overhead on locking, context switches, memory efficient

= Two types of threads

— Internal threads (used for application tasks)

— OS interface threads (uses separate process on HP-UX, kernel threads
on Linux and Windows), used for I/O

Eloguence thread model e,ﬂq.ﬁeﬂ

Eloquence B.08.00 uses OS native threads

= Improves scalability and latency (depending on workload)
= |Improves utilization of modern hardware

= Additional system resources needed

eloquence’

Performance enhancements

Various performance enhancements to improve scalability,
such as

= Reduce lock contention during cache-miss handling

= Improved concurrency with client-side caching

= Revised lock scheduler scalability for competing locks

= More efficient forward-log format for index and meta data

eloquence’

Database replication

= Replicates entire server instance, not individual database
= Replication is unidirectional (master / slave)
= Replication is asynchronous but close to real time

= Slave server(s) are are read-only, write access may be
redirected to master

= Replicates server transactions, not IMAGE calls
= Requires little maintenance
= Optional feature, requires separate license key

Replication use cases e,ﬂq.ﬁeﬂ

= Hot standby server for disaster failover

= Load sharing by moving reporting to slave

= Incremental remote backup

= time snapshots” on slave for fallback or reporting
= Distributing central data to branch offices

eloquence’

Database Replication

= Master and slave server must have compatible architectures

= Master and slave server may reside on the same or different
machines

= Requires fw logs on master server

= dbrepl utility reads fw logs and interacts with slave server

— Contacts slave server to obtain replication status
— Follows fw logs on master and replicates to slave

= “dbctl replication status” may be used to obtain replication
progress/status from master and slave server

Database replication emﬁ!
quence

elogdb ,master”

A A

[dbrepl } 0 :> elogdb ,slave*
$ dbrepl -c master.cfg -v slave-host:slave-port v v

RN

77

Additional recovery options e,ﬂq.ﬁeﬂ

= Point-in-time recovery

— recover from backup to a specific point in time
— requires previous backup and fw log files since then

= Incremental recovery

— recovery may continue from last point
— server may not be started in between

eloquence’

Database monitoring

= Additional options for server performance logging

— Dynamically enable/disable performance logging via dbctl
— Simplified integration with monitoring framework

= Logging of session performance information
— session-specific performance monitoring
— Disk accesses, DB calls and elapsed time

— Optionally log information at a specified frequency in addition to session
completion

— Dynamically enable/disable logging via dbctl
— Useful to analyze application performance problems
— Also available interactively through http status

= Enhancements to http status pages

eloquence’

Session Performance Log

= Logging of session activity and performance information

— Disk accesses, DB calls and elapsed time

— Optionally log information at a specified frequency in addition to session
completion

— Also available interactively through http status
— Useful to analyze application performance problems

= Configured in the config file

— [server] SessionStatFile specifies log file
— [server] SessionStatMode specifies log frequency
— 0 = off, 1 = at end of session, > 1 also log at specified interval (sec)

= May be configured dynamically with dbctl

— dbctl sessionstatfile [FileName|DISABLED]
— dbctl sessionstatmode [mode]

fwutil library N

= Programmatic access to db transactions

easy way to monitor database changes from custom program
incremental and asynchronous, typically close to real time

fwutil library performs complex work and isolates utility from any internals
Uses fw logs and audit information

= Example uses

Implement custom actions on database changes
Data extraction and reporting (data warehouse)

eloquence’

fwutil library

= Custom program needs to be written in C and linked with the
fwutil library

= Program passes control to the fwutil library

= fwutil library extracts information from fw logs and invokes
customer defined callback functions

= fwutil library works incrementally, saving its progress in a status
file

= Example programs are available

— fwtest.c - print some information on database transactions
— fwsgl.c - convert database changes to SQL like syntax

More information e,oq.ﬁe%,

Detailed information is available on the
Eloquence web site
http://eloquence.marxmeier.com

Get In contact
Info@marxmeier.com

